

Beef Grading

Dr. Gretchen Hilton
Assistant Professor
Meat Judging Team Coach

Inspection

- Wholesomeness
- USDA
 Food Safety Inspection
 Service
- Veterinarian
- Mandatory
- Taxpayer funded

Grading

- Value Quality and Yield
- USDA

Agricultural Marketing Service

- Grader
- Voluntary
- Packer pays per hour

 The process of dividing a commodity into groups which differ in the marketing process

Grades:

- Must be based on factors that are important to buyers and sellers
- Should reflect the final use of the product
- Should be practical and conform, as closely as possible, to existing trade practices

Dressing Percentage

- HCW/LW * 100
- Steers & Heifers = 61 66%
- Cows = 48% (very variable)
- Affected by:
 - Fill
 - Finish (fat)
 - Muscling
 - Mud, Horns, Etc.

Yield Grading

- USDA YG 1, 2, 3, 4 or 5
- To predict CUTABILITY
- Percent boneless, closely trimmed retail cuts from the round, loin, rib, and chuck
- 1 = highest cutability (more muscle; less fat)
- 5 = lowest cutability (less muscle; more fat)

Yield Grading Factors

- Fat Thickness = Preliminary Yield Grade (PYG)
- Hot Carcass Weight (HCW)
- Ribeye Area (REA)
- Kidney, Pelvic & Heart Fat % (KPH)

Ribbing

- Between the 12th & 13th Rib
- Bloom Time = approx. 15 min for oxygenation of the ribeye

Fat Thickness (PYG)

- ¾ Distance opposite the ribeye
- Can measure as fat thickness or PYG
- Must convert if use fat thickness
- Also, make adjustments based on fat of entire carcass

Fat Thickness to PYG

- \bullet 0.0" fat = 2.0 PYG
- For every 0.1" increase in fat increase PYG 0.25
 - -0.1'' = 2.25 PYG
 - 0.2" = 2.5 PYG
 - -0.3'' = 2.75 PYG
 - \bullet 0.4" = 3.0 PYG
 - \bullet 0.6" = 3.5 PYG
 - -0.8'' = 4.0 PYG
 - 1.2" = 5.0 PYG

PYG 2.5

PYG 3.0

PYG 3.5

PYG 4.0

PYG 4.5

PYG 5.0

- 600 lbs carcass requires an 11.0 sq. in. ribeye
- Each 100 lbs increase in carcass weight requires an additional 1.2 sq. in. REA
 - 700 lbs carcass requires 12.2
 - 800 lbs carcass requires 13.4
 - 500 lbs carcass only requires 9.8

HCW/REA Schedule

HCW	REA	HCW	REA
500	09.8	700	12.2
525	10.1	725	12.5
550	10.4	750	12.8
575	10.7	775	13.1
600	11.0	800	13.4
625	11.3	825	13.7
650	11.6	850	14.0
675	11.9	875	14.3

HCW/REA adjustment

- If larger than needed, subtract from PYG
- If smaller than needed, add to PYG
- For every 0.3 difference from needed size add or subtract 0.1 to PYG
- Examples:
 - 600 lbs/11.0; measures 12.2; -0.4 to PYG
 - 800 lbs/13.4; measures 12.5; +0.3 to PYG
 - 750 lbs/12.8; measures 16.8; -1.3 to PYG

REA Measurement

- Based on percentage of HCW
- 3.5% = 0.0 adjustment
- For every 0.5% deviation from 3.5 +/-0.1 adjustment to PYG
- If more than 3.5%, add to PYG
- If less than 3.5%, subtract from PYG

KPH

$$-5.0\% = +0.3$$

$$\bullet$$
 4.0% = +0.1

$$3.5\% = 0.0$$

$$2.0\% = -0.3$$

KPH

KPH examples

KPH Fat

11/2%

21/2%

31/2%

41/2%

Determining USDA YG

- Determine PYG
- Make Adjustments to PYG
 - HCW
 - REA
 - KPH
- Examples!!!

PYG = 2.7/2.8

REA = 15.5

KPH = 2.0%

YG = 1.5

PYG = 3.0/3.2

REA = 14.4

KPH = 2.5%

YG = 2.6

PYG = 3.1/3.4

REA = 10.8

KPH = 3.0%

YG = 3.5

PYG = 4.3/4.5

REA = 13.1

KPH = 3.0%

YG = 4.5

PYG = 4.8/5.2

REA = 12.0

KPH = 4.0%

YG = 5.5

Quality Grading

- Estimates palatability
 - Tenderness, Juiciness & Flavor
- Based:
 - Maturity (Physiological)
 - Marbling Score

USDA Quality Grades

- "Young" cattle < 42 mos.</p>
 - Prime
 - Choice
 - Select
 - Standard

- "Old" (Hardbone) cattle > 42 mos.
 - Commercial
 - Utility
 - Cutter
 - Canner

- Maturity A, B, C, D, E
 - Lean Maturity
 - Lean Color
 - Lean Texture
 - Skeletal Maturity
 - Bone Ossification
 - Shape & Color of Ribs
- Marbling
 - Amount & Distribution of Intramuscular Fat

Lean Maturity

Thoracic Buttons

Ossification of Thoracic **F**Buttons

Maturity	Thoracic	Sacral	Lumbar	Ribs
A ⁰	0%	Distinct Separation	None	Red & Round
B ⁰	10%	Complete	Nearly Complete	Slightly Wide & Flat
C ₀	35-75%	Complete	Complete	
D ₀	75-95%	Complete	Complete	Moderately Wide & Flat
E ⁰	95-100%	Complete	Complete	Wide & Flat (White)

A Maturity Thoracic Buttons

B Maturity Thoracic Buttons

C Maturity Thoracic Buttons

D Maturity Thoracic Buttons

E Maturity Thoracic Buttons

Marbling Scores

- Abundant
- Moderately Abundant (Mab)
- Slightly Abundant (Slab)
- Moderate (Md)
- Modest (Mt)
- Small (Sm)
- Slight (Sl)
- Traces (Tr)
- Practically Devoid (Pd)
- Devoid (D)

Marbling

Small

Modest

Moderate

Slightly Abundant

Moderately Abundant

Quality Grading Chart

Determining the Quality Grade

- Determine Lean & Skeletal Maturity
- Balance Maturities
- Determine Marbling Score
- Determine Final Quality Grade

A Maturity

- \bullet Ab = Pr+
- \blacksquare Mab = Pr^o
- Slab = Pr-
- Md = Ch+
- Mt = Cho
- Sm = Ch-

- SI^{50} & up = Se+
- SI^{49} & down = Se-
- Tr = St+
- Pd = St-

B Maturity

- Must have enough marbling to make up for degree of maturity
 - B³⁰ maturity would need Slab³⁰ to be Pr-
 - \bullet B³⁰ & Slab²⁰ = Ch+
- If B maturity overall & Small or Slight marbling then USDA Standard!!!!!

- Must have enough marbling to make up for degree of maturity
- Can only be Commercial, Utility, Cutter or Canner
- Remember C⁰ needs Sm⁰ to be Cm-

C, D & E Chart

Quality Grade	С	О	E
Cm+	Md	Slab	Mab
Cmº	Mt	Md	Slab
Cm-	Sm	Mt	Md
Ut+	SI	Sm	Mt
Utº	Tr	SI	Sm
Ut-	Pd	Tr	SI

Prime+ (Ab)

Prime^o (Mab)

Prime- (Slab)

Choice+ (Md)

Choice^o (Mt)

Choice- (Sm)

Select+ (SI+)

Select- (SI-)

Standard+ (Tr)

Standard- (Pd)

Ranking Beef Carcasses & Cuts

- Carcasses, Ribs, Shortloins, Loins
 - Quality First
 - Then Cutability
- Rounds
 - CUTABILITY

Ranking of Quality Classes

- Determine QG
 - Prime, Top Choice, Low Choice, Select, Standard
 - Standards always go LAST!
- Determine differences in cutability
- Rank accordingly

Questions?

